

DOT HS 812 074

October 2014

Characterization of Potential Security Threats in Modern Automobiles

A Composite Modeling Approach

DISCLAIMER

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Suggested APA Format Citation:

McCarthy, C., Harnett, K., & Carter, A. (2014, October). Characterization of potential security threats in modern automobiles: A composite modeling approach. (Report No. DOT HS 812 074). Washington, DC: National Highway Traffic Safety Administration.

Technical Report Documentation Page

1. Report No. DOT HS 812 074	2. Government	Accession No.	3. Recipient's Catalog I	No.
4. Title and Subtitle			5. Report Date	
Characterization of Potential Security	y Threats in M	Modern Automobiles:	October 2014	
A Composite Modeling Approach			6. Performing Organiza	tion
7. Authors			8. Performing Organiza	tion
Charlie McCarthy, Kevin Harnett, A	rt Carter			
9. Performing Organization Name and Address	_		10. Work Unit No. (TRA	AIS)
Volpe National Transportation Syste	ms Center			
Security and Emergency Managemer	nt Division			
55 Broad Street				0.000
Cambruge, MA			DTELE1 12 V/00	0000
12 Sponsoring Agency Name and Address			13 Type of Report and	UZ I Period
National Highway Traffic Safety Ad	ministration		Final Report	i chou
1200 New Jersev Avenue SE.			14. Sponsoring Agency	Code
Washington, DC 20590				
15. Supplementary Notes				
16. Abstract	toil od in this	roport is to deparibe a	omposito model ir	
The primary objective of the work de	elaneo munis		composite modern	ig
approach for potential cybersecurity	threats in mo	dern venicies. Inreatr	nodels, threat	
descriptions, and examples of various types of conceivable threats to automotive systems are				re
included, along with a matrix contain	ning a conder	nsed version of the vario	ous potential attacl	(S.
This publication is part of a series of reports that describe our initial work under the goal of				
facilitating cybersequrity best practices in the automotive industry (Goals 1 and 2). The				
information procented herein increase the collective knowledge here in cutemptive g thereas with				
information presented herein increase the conective knowledge base in automotive cybersecurity;				
neip identify potential knowledge ga	ps; neip aesc	ribe the risk and threat	environments; and	neip
support follow-on tasks that could be	e used to esta	olish security guideline	S.	
17. Key Words		18. Distribution Statement		
Cybersecurity, NIST, NHTSA, Guidelines, Risk		Document is available	e to the public from	n the
Management, Baseline, Use Cases, Best		National Technical In	formation Service	
Practices		www.ntis.gov		
19. Security Classif. (of this report)	20. Security Cla	assif. (of this page)	21. No. of Pages	22
Unclassified			46	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

i

Acknowledgements

The authors would like to thank the automotive industry original equipment manufacturers who participated in informational interviews conducted by the National Highway Traffic Safety Administration on the subject of automotive cyber security.

The authors would also like to thank the National Science Foundation, the Defense Advanced Research Project Agency, and the members of the SAE International Vehicle Electrical System Security Committee and Automotive Security Guidelines and Risk Development Task Force for their comments and suggestions pertaining to this report.

ii

Foreword

NHTSA's Automotive Cyber security Research Program

Based on a systems engineering approach, the National Highway Traffic Safety Administration established five research goals to address cybersecurity issues associated with the secure operation of motor vehicles equipped with advanced electronic control systems. This program covers various safety-critical applications deployed on current generation vehicles, as well as those envisioned on future vehicles that may feature more advanced forms of automation and connectivity. These goals are:

- 1. Build a knowledge base to establish comprehensive research plans for automotive cybersecurity and develop enabling tools for applied research in this area;
- 2. Facilitate the implementation of effective industry-based best practices and voluntary standards for cybersecurity and cybersecurity information sharing forums;
- 3. Foster the development of new system solutions for automotive cybersecurity;
- 4. Research the feasibility of developing minimum performance requirements for automotive cybersecurity; and
- 5. Gather foundational research data and facts to inform potential future Federal policy and regulatory decision activities.

Thisreport

The primary objective of the work detailed in this report is to describe a composite modeling approach for potential cybersecurity threats in modern vehicles. Threat models, threat descriptions, and examples of various types of conceivable threats to automotive systems are included, along with a matrix containing a condensed version of the various potential attacks.

This publication is part of a series of reports that describe our initial work under the goal of facilitating cybersecurity best practices in the automotive industry (Goals 1 and 2). The information presented herein increase the collective knowledge base in automotive cybersecurity; help identify potential knowledge gaps; help describe the risk and threat environments; and help support follow-on tasks that could be used to establish security guidelines.

 \mathcal{Q}

iii

Table of Contents

1.0 Introduction	1
1.0.1 Automotive Networks	2
1.0.2 Electronic Control Units	4
1.1 Objectives	4
1.2 Methodology	4
1.2.1 Why Threat Modeling?	5
1.2.2 Types of Threat Models	5
A. STRIDE	5
B. Trike	6
C. Application Security Frame	6
2.0 Composite Threat Model	7
2.0.1 Identify Critical Applications/Systems	7
A. Application/System Decomposition	7
2.0.2 Determination and Analysis of Threats	8
A. Threat Identification	8
B. Threat Analysis	9
Appendix A: Use Case Examples	1
Appendix B: Completed Threat MatricesB-	1
Appendix C: Works CitedC-	1

iv

Tables

Table 1: Sample Automotive Networks	3
Table 2: ASF Threat Categories	6
Table 3: Use Case Elements - Potential Entry Points	10
Table 4: Use Case Elements – Potential Access Methods	10
Table 5: Use Case Elements - Types	11
Table 6: Use Case Elements - Potential Outcomes	12
Table 7: Threat Matrix Categories	13
Table 8: Threat Matrix Population Example	17

Figures

Figure 1: Typical ECUs	4
Figure 2: STRIDE Threat Categories	5
Figure 3: Composite Threat Model Outline	7
Figure 4: Threat Matrix Working Layout	. 20
Figure 5: Threat Matrix Report Layout	. 21

v

List of Acronyms

ABS	antilock brake system
ASF	application security frame
BCM	body control module
CAN	controller area network
CDMA	code division multiple access
COTS	commercial-off-the-shelf
CVE	common vulnerability environment
DoS	denial of service
DRM	Digital Rights Management
DSRC	dedicated short range communications
EBCM	Electronic Brake Control Module
ECM	engine control module
ECU	electronic control unit
EGR	exhaust gas recirculation
GPS	global positioning system
GSM	Global System for Mobile Communications
HVAC	heating, ventilation, and air conditioning
ICS-CERT	Industrial Control Systems Cyber Emergency Response Team
IDS	Intrusion Detection System
ISAC	Information Sharing and Analysis Centers
ITS	Intelligent Transportation Systems
LAN	local area network
LIN	local interconnect network
MAP-21	Moving Ahead for Progress in the 21st Century Act
MOST	Media Oriented System Transport
NFC	Near Field Communications
OBD-II	on-board diagnostics
OEM	original equipment manufacturer
PC	personal computer
PT-ISAC	Public Transportation Information Sharing and Analysis Center
RF	radio frequency
SD	secure digital
SDM	sensing and diagnostics module
SME	subject matter experts
ST-ISAC	Surface Transportation Information Sharing and Analysis Center
UMTS	Universal Mobile Telecommunications Systems
USB	universal serial bus
US-CERT	United States Computer Emergency Readiness Team
V2I	vehicle-to-infrastructure
V2V	vehicle-to-vehicle
V2X	vehicle-to-vehicle or infrastructure

vi

1.0 Introduction

Modern day automobiles are complex machines which can contain over 60 embedded electronic control units, networks to support these units, and a host of external interfaces, both wired and wireless. Wired interfaces can include USBs, CDs, DVDs, and secure digital (SD) cards. Wireless interfaces can include short-range and long-range connectivity, such as via Bluetooth, Wi-Fi, radio frequency, Near Field Communications, Global System for Mobile Communications/Code Division Multiple Access, and Universal Mobile Telecommunications System. The wireless interfaces can support a host of features including remote tire pressure monitoring, telematics, and Smart key keyless entry/ignition start. vehicle-to-vehicle and vehicle-to-infrastructure communications (collectively referred to as V2X communications) also promise tremendous benefits for efficiency, comfort, and driving safety which may be on the near horizon. The continuing trend in vehicle architecture is a shift towards more open systems.

Driven by robust consumer demand for increased safety and convenience functions, the use of embedded systems and the code to support them will likely continue to grow. By using embedded systems, manufacturers can provide upgrades and premium functionality more readily and cost effectively. In a 2011 EE Times article [1], IBM Corporation's Meg Selfe, a vice president for complex and embedded systems at IBM Rational, remarked that the Chevrolet Volt uses an estimated 10 million lines of code running on about 100 ECUs. In comparison, she estimated that a typical 2009 model used six million lines of code, and a 2005 model used about 2.4 million lines of code.

To date, there are no known field experiences with exploited cyber-vulnerabilities in automobiles in the absence of a prolonged direct physical access to the vehicle. This is, in part, due to design, testing and quality assurance practices original equipment manufacturers and system designers employ. However, it is recognized that increasing interconnectedness with internal and external networks and growing system complexity could introduce new security vulnerabilities in cyber-physical systems that could potentially be exploited by various adversaries.

The safety and security of vehicle electronic systems is a continuing focus for NHTSA. The U.S. Department of Transportation's 2012 highway authorization act, Moving Ahead for Progress in the 21st Century Act (MAP-21), contains specific language in Section 31402 pertaining to electronic systems [2]:

(a) IN GENERAL. — Not later than 2 years after the date of enactment of this Act, the Secretary shall complete an examination of the need for safety standards with regard to electronic systems in passenger motor vehicles. In conducting this examination, the Secretary shall—

 (1) consider the electronic components, the interaction of electronic components, the security needs for those electronic systems to prevent unauthorized access, and the effect of surrounding environments on the electronic systems; and
 (2) allow for public comment.

(b) REPORT. — Upon completion of the examination under subsection (a), the Secretary shall submit a report on the highest priority areas for safety with regard to the electronic systems to the Committee

on Commerce, Science, and Transportation of the Senate and the Committee on Energy and Commerce of the House of Representatives.

In road transportation scenarios related to the security of vehicle information or functions, stakeholders may be concerned primarily with the following four areas.

- Privacy/Security unwanted or unauthorized acquisition of data pertaining to
 - Vehicle or driver activities (e.g., location of vehicle, navigation destination, etc.)
 - Vehicle or driver identity data
 - o Vehicle or sub-system design and implementation (i.e., OEM/supplier proprietary data)
- Unwanted or Unauthorized commercial transactions
- Operational interference with
 - On-board non-safety vehicle systems such as infotainment, and heating, ventilation, and air conditioning systems, etc.
 - V2X communications that may have non-safety impacts on the operational performance of vehicles
 - V2X communications that may have non-safety impacts on intelligent transportation systems (ITS)
- Safety interference with on-board vehicle systems or V2X communications that may affect the safe operation of vehicles and ITS

A vehicle's cyber-controlled subsystems could be compromised in a number of ways, such as via deliberate cyber-attacks, owners of the system unintentionally changing default parameters in a way that reduces safeguards in place, through possible physical damage to network components, or via radio frequency interference.

1.0.1 Automotive Networks

In a vehicle, the exchange of data between the various ECUs can take place in one of two primary ways:

- 1. Data is transferred between ECUs over dedicated wires as in peer-to-peer communications; and
- 2. Data is transferred between ECUs via a network data bus.

There are multiple types of vehicle networks. Table 1 contains a partial listing of current automotive networks. There may be multiple networks within the same vehicle supporting different functions with varying levels of safety impact potential.

Table 1: Sample Automotive Networks

Network Name	Physical Layer	Network Topology	Typical Usage
CAN (Controller Area Network)	Twisted pair, 9-pin D- Sub	Point to Point	Body systems, engine management, transmission, etc.
LIN (Local Interconnect Network)	Single wire	Single Master to Multiple Slave (up to 16 slaves)	Door locks, climate control, seat belts, sunroof, lighting, window lift, mirror control
FlexRay	Electrical, optical	Single and Dual Channel	Drive by wire, brake by wire, steer by wire, stability control, etc.
MOST (Media Oriented Systems Transport)	Optical	Ring (up to 64 MOST devices)	Infotainment data
BYTEFLIGHT	Optical	Master/Slave	Safety critical applications (e.g., air bags)

For example, one of the more common automotive platform networks is the controller area network bus¹. The CAN bus links individual ECUs to form an integrated system. Data transfer in the CAN bus works in the same manner as a telephone party line. An ECU sends data into the bus while other ECUs listen and if the data concerns them, the other ECUs act upon it.

A typical CAN bus consists of a controller, a transceiver, two data bus lines, and two data bus terminals. Except for the physical data bus lines, the components reside in the ECUs. The CAN bus components perform the following functions:

- CAN Controller receives outgoing data from the processor in the ECU, processes the data, and sends it to the CAN transceiver. In addition, the controller receives incoming data from the CAN transceiver, and then checks it to see if the data message is for that ECU. If the message is for that ECU, the CAN controller processes it and sends it to the ECU processer. If the message is not for that ECU, the data is ignored.
- CAN Transceiver acts as a transmitter and receiver, converts outgoing data from the CAN controller to electrical signals and sends them over the CAN bus lines. Also, the CAN transceiver receives incoming signals from the CAN bus lines, converts these electrical signals, and sends them to the CAN controller.

¹ While there may be several networks in the modern automobile, as identified in Table 1, the CAN bus has the most publicly available and current vulnerability information in the cybersecurity community.

- 3. CAN Terminal is a resistor that prevents data from being reflected back at the end of the lines.
- CAN Bus Lines are physical wires that transmit the bi-directional signals from the CAN transceivers.

1.0.2 Electronic Control Units

The first ECUs (see Figure 1) were dedicated to engine management in response to meeting emission standards. Back in the 1980s, cars only had one "computer." Currently, there are between 70 and 100 ECUs in an automobile. An ECU can be interconnected to other ECUs via a digital bus network. There may be multiple bus networks in an automobile, split along component groups. Typically, critical ECUs such as the electronic brake control module are given a higher data rate bus than less critical ones such as HVAC.

1.1 Objectives

This paper describes a modeling approach for characterizing potential threats for automotive control systems. Threat models, descriptions, and examples of various types of threats to automotive systems are included, along with a matrix containing a condensed version of the various sample attack possibilities.

The completed threat matrix can be found in Appendix B.

1.2 Methodology

Information for this modeling approach was provided through various groups, government entities, industry publications and periodicals, interviews with subject matter experts, SME presentations and studies, DOT-funded studies, and subject matter government reports. Appendix C provides a list of sources used in the development of this report.

1.2.1 Why Threat Modeling?

Threat modeling is a structured approach that allows cyber security threats to be classified. When integrated into the design process, threat modeling would likely reduce the lifecycle cost of providing security for an application.

An effective threat model:

- Identifies potential threats and the conditions that must be in place for a potential attack to make an impact;
- Provides information on how existing safeguards would affect the outcome of the attack;
- Provides information that would help target areas for mitigations; and
- Allows for categorization of attacks and provides a means to group threats to allow for development of mitigations that would address multiple threats.

1.2.2 Types of Threat Models

There are many different threat models in use today in various industries; however it is unclear whether these existing threat models can address all of the unique factors in the automotive cyber landscape. Therefore, a hybrid of various models is proposed.

A few of the many threat models in use are briefly described below.

A. STRIDE [3]

The Microsoft STRIDE model characterizes potential threats according to the types of exploit that are used. The STRIDE acronym is made up of the first letter of each of the threat categories, shown in Figure 2. In use, the STRIDE threats are considered against each component of the system, as well as the relationship between components from the attacker's point of view. Variants of the STRIDE model are currently used by at least one major OEM, according to the subject matter expert interviews. See Section 2.0.2 (Table 5) for a detailed description of the STRIDE model categories.

S	Spoofing Identity
T	Tampering with Data
R	Repudiation
1	Information Disclosure
D	Denial of Service
E	Elevation of Privilege

Figure 2: STRIDE Threat Categories

B. Trike

Trike [4] is a threat modeling framework with similarities to the Microsoft threat modeling processes. However, Trike differs because it uses a risk-based approach with distinct implementation, threat, and risk models, instead of using the STRIDE aggregated threat model (attacks, threats, and weaknesses).

Trike's goals are:

- With assistance from the system stakeholders, to ensure that the risk this system entails to each asset is acceptable to all stakeholders;
- Communicate what has been done and its effects to the stakeholders; and
- Empower stakeholders to understand and reduce the risks to them and other stakeholders implied by their actions within their domains.

C. Application Security Frame

The Microsoft ASF [5] methodology looks at the data network from a defender's point of view. The threat categories listed in Table 2 are designed to be system-administrator-centric.

Input and Data Validation	Configuration Management	Cryptography
Authentication	Sensitive Data	Exception Management
Authorization	Session Management	Auditing and Logging

Table 2: ASF Threat Categories

2.0 Composite Threat Model

After closely analyzing STRIDE, Trike, and ASF from an automotive sector applicability standpoint, the common elements from various methods were selected to establish the composite threat modeling method described in this section. This method is summarized in Figure 3.

	Composite Threat Model Outline
2.0.1	Identify critical applications/systems
	A. Application/system decomposition
	1. Create interconnection drawings
	2. Create high level data flow diagrams
2.0.2	Determination and analysis of threats
	A. Threat identification
	B. Threat analysis
	1. Drawing review
	2. Use case development
	3. Vehicle threat matrix development and population

Figure 3: Composite Threat Model Outline

2.0.1 Identify Critical Applications/ Systems

A critical application/system (e.g., brake, powertrain) for a vehicle is viewed as a vehicle function that, if compromised maliciously, could result in a serious safety concern. This step identifies priority application/systems for analysis, which requires a working knowledge of the specific component/system and how it relates to other components/systems. It is essential to assess the interconnected network impacts, considering all possible data paths and potential attack vectors that could provide for entry into a critical system/component potentially through a noncritical system/component.

A. Application/System Decomposition

Once a component/system has been identified as being critical (or that it is connected to a critical component/system), an interconnection and a data flow drawing of the component/system are created.

1. Create Interconnection Drawing

It is essential to create a complete interconnection drawing which contains:

- All relevant on-board components and systems: Identify all components and systems that are physically connected to or communicate with the component/system being studied, with all connections.
- External interface connections: Identify external connections such as on-board diagnostics (OBD-II), Bluetooth, USB, etc.
- Data entry/exit points: Note any point whereby data can enter/exit the system/component.
- Data types: Identify the areas where there are separations of system and component data levels (i.e., critical versus non-critical) with special attention to those areas with data having differing levels of criticality handoffs (e.g., gateways).

2. Create High Level Data Flow Drawing

The purpose of the data flow drawing is to visually represent the data flows that support the functional relationships between the various systems/components, as well as the trust boundaries that exist between the various components.

2.0.2 Determination and Analysis of Threats

A. Threat Identification

Threat identification is a continuous process that includes monitoring the system's environment to determine if credible cyber threats exist. The automotive system developers and first tier suppliers are usually the best experts on their systems, and as such, it is essential for them to understand the landscape of cyber security threats and how they may impact safe operations. Cyber security threats are identified from multiple sources such as vulnerability databases, vendor and industry vulnerability notices, and security testing (by both vendors and OEMs), which often describe threats to a generic platform. It is important for the automotive system developers to analyze these threats and determine if they are applicable to their platforms and systems. Vulnerability data from intelligence agencies such as sector-specific Information Sharing and Analysis Centers, the U.S. Computer Emergency Readiness Team, the Industrial Control Systems Cyber Emergency Response Team, and MITRE's Common Vulnerability Environment can also assist in this analysis.

In other disciplines, such as safety, historical data are typically used to estimate the probability that a given threat may occur. Current data for "automotive" man-made and intentional malicious threats (cyber threats) are scarce and not sufficient to estimate occurrence and recurrence probabilities of these attacks with confidence, making the determination of a particular threat for any specific system fairly subjective at this time. It may be valuable to monitor and draw from intelligence data on similar components deployed in related but non-automotive environments when possible (e.g., aircraft, transit systems).

This process can play a key role in predicting component behavior and interactions within the system, which may integrate commercial-off-the-shelf (COTS) components and other propriety systems that may have been developed in isolation. The vast deployment of COTS components across multiple

industries serves as a very large repository of COTS interactions and may point to focus areas to assess cyber-vulnerabilities.

Techniques to identify threats should ideally include evidence of cyber activity across fleets, and related industries, through a trusted centralized repository or clearing house. Other industries have successfully established similar capabilities through the formation of sector-specific ISACs, e.g., the Public Transportation ISAC (PT-ISAC), the Surface Transportation ISAC (ST-ISAC), and the aviation/aircraft ISAC that is under development.

B. Threat Analysis

1. Drawing Review

Once the interconnection and data flow drawings are completed, they are reviewed to provide context for development of the use cases. Examples of typical review questions are:

- What data paths are deemed critical to support the mission of the system?
- Are there any indirect data paths that an attacker could use to influence critical areas from non-critical areas?
- What are the gateways or components that handle differing levels of data criticality on the network?
- What are the physical and wireless entry points that connect the vehicle to external sources and networks?
- What are the confidentiality, integrity and availability data concerns?

2. Use Case Development

After creating and analyzing the interconnection and data flow drawings referenced above, use cases and potential attack scenarios can be developed. A use case or attack scenario describes a potential attack at a high level, so the amount of detail included in the use case should be kept to a minimum. The use case does not describe the minutiae of the attack, as the threat model is concerned only with the fundamentals of the attack. Typically, use case development requires input from multiple sources familiar with the system. Scenarios deemed too improbable on their own may later provide substance for other more likely types of attacks. Each use case includes a short descriptive title.

(a) Use Case Elements

When developing use cases the following elements are included.

- Entry Points: How an attacker may gain access to the vehicle systems
- Access Methods: The means that an attacker may use to access the entry points
- Types: The type of attack that may be launched
- Outcomes: The potential effects of the attack

Potential examples of use case elements for automobiles are listed in Table 3 through 6. Table 3 lists examples of entry points, both wired and wireless. Table 4 provides examples of access

methods. Table 5 provides an example of a type element in the use case. The types of attack in this example are borrowed from the STRIDE method. Table 6 lists examples of the outcomes element of the use case.

Entry Point Type	Entry Point
	OBD-II Port
	Network harness connectors
	Diagnostic Ports
Wired	USB Port
Wil Ca	On-board Vehicle Networks (CAN, FlexRay, Ethernet, MOST, etc.)
	CD/DVD player
	Vehicle Charging Port
	Radio Frequency (tire pressure monitor, key fob, etc.)
	Near Field Communications
Wireless-Short Range	Wi-Fi
5	Bluetooth
	Dedicated short range communications
Window Long Banga	GPS receiver
WITCHESS-LONG Range	GSM/CDMA

Table 3: Use Case Elements - Potential Entry Points

Table 4: Use Case Elements - Potential Access Methods

Access Method Type	Access Method
	Network-Call Center
	Network-Service Center
Outside Networks	Network-Home network
	Network-Cellular
Component	Component-Counterfeit
Component	Component-Tampered with or modified (OEM/Aftermarket)
	Personal Computer
	OEM supplied-Smart key fob
Portable	RF repeaters/transceivers
	Removable Media- e.g., CD or DVD disc
	Smart phone
	Smart music player- e.g., portable music device
	Custom ECU

Table 5: Use Case Elements - Types

Types (Borrowed From STRIDE Method)

Spoofing I dentity: "I dentity spoofing" is a key risk for applications that have many users but provide a single execution context at the application and database level. In particular, users should not be able to become any other user or assume the attributes of another user.

Tampering with Data: Users can potentially change data delivered to them, return it, and thereby potentially manipulate client-side validation, GET and POST results, cookies, HTTP headers, and so forth. The application should not send data to the user, such as interest rates or periods, which are obtainable only from within the application itself. The application should also carefully check data received from the user and validate that it is sane and applicable before storing or using it.

Repudiation: Users may dispute transactions if there is insufficient auditing or recordkeeping of their activity. For example, if a user denies initiating an action, and the activities were not tracked through the application, there may be insufficient basis for a resolution. Therefore, consider if the application requires non-repudiation controls, such as web access logs, audit trails at each tier, or the same user context from top to bottom. Preferably, the application should run with the user's privileges, not more, but this may not be possible with many off-the-shelf application frameworks.

Information Disclosure: Users are rightfully wary of submitting private details to a system. If it is possible for an attacker to publicly reveal user data at large, whether anonymously or as an authorized user, there will be an immediate loss of confidence and a substantial period of reputation loss. Therefore, applications must include strong controls to prevent user ID tampering and abuse, particularly if they use a single context to run the entire application. Also, consider if the user's web browser may leak information. Some web browsers may ignore the no caching directives in HTTP headers or handle them incorrectly. In a corresponding fashion, every secure application has a responsibility to minimize the amount of information stored by the web browser, just in case it leaks or leaves information behind, which can be used by an attacker to learn details about the application, the user, or to potentially become that user. Finally, in implementing persistent values, keep in mind that the use of hidden fields is insecure by nature. Such storage should not be relied on to secure sensitive information or to provide adequate personal privacy safeguards

Denial of Service: Application designers should be aware that their applications may be subject to a denial of service attack. Therefore, the use of expensive resources such as large files, complex calculations, heavy-duty searches, or long queries should be reserved for authenticated and authorized users, and not available to anonymous users. For applications that do not have this luxury, every facet of the application should be engineered to perform as little work as possible, to use fast and few database queries, to avoid exposing large files or unique links per user, in order to prevent simple denial of service attacks.

Elevation of Privilege: If an application provides distinct user and administrative roles, then it is vital to ensure that the user cannot elevate his/her role to a higher privilege one. In particular, simply not displaying privileged role links is insufficient. Instead, all actions should be gated through an authorization matrix, to ensure that only the permitted roles can access privileged functionality.

Table 6: Use Case Elements - Potential Outcomes

Outcomes		
Cause erratic behavior within normal operational parameters	Prevent normal data bus communications flow	
Cause behavior outside of normal operational parameters that a driver can mitigate	Cause false or misleading information to be displayed to the driver	
Cause behavior outside of normal operational parameters that a driver cannot mitigate	Cause driver distraction	
Data breach in private information, e.g., passwords, address books	Theft of security data e.g., Digital Rights Management keys	

3. Vehicle Threat Matrix Development and Population

Once use cases have been developed, both the data contained within the use cases and data that supports the use cases are parsed into the vehicle threat matrix.

The vehicle threat matrix is used to consolidate threat data. It is constructed as a spreadsheet, allowing the matrix to be sorted by various categories as needed. In the matrix, categories of severity, sophistication level, and likelihood are indicated as high, medium, or low based on expert opinion. These categories allow for flexibility in their assignments while still maintaining the ability to sort the matrix data.

(a)Threat Matrix Categories

Table 7 contains the vehicle threat matrix categories and their descriptions. Category options for input are given where applicable.

Table 7: Threat Matrix Categories

Matrix Category	Category Description	Category Options
ID Number	Identification number for the attack	
Attacked Safety and Non- Safety Zone Groups/Attack Support Zone Groups	Groups of various like categories of components and systems that are targeted by the attack or that are used to support the attack	 Communications: Internal communications paths (e.g., CAN, FlexRay, IDb-1394, MOST) Vehicle Operations: Powertrain - Engine control, hybrid drive systems, transmission, misc. power train sensors (e.g., torque convertor lockup) Chassis and Safety - Brake control, steering, environmental sensors, air bag sensors, tire pressure sensors, misc. chassis sensors (e.g., steering angle) Body Electronics - Instruments, door modules (e.g., remote locks, light control, seat control) Comfort Systems: Climate control, air vent positions, remote start Infotainment: Audio, display/video, navigation, embedded telephonic communications External interfaces:
Attacked Zone Safety Related	Whether or not the attacked zone contains safety related functions	• Yes • No
Component/System	The component or system that is under attack	E.g., the electronic braking system as opposed to an electronic brake actuator
Vulnerability ² That Could Be Exploited	Protocols/applications that could be used/corrupted in order to achieve the outcome of the attack	E.g., lack of firewalls, easy diagnostic access

² NIST 800-30 defines vulnerability as "A flaw or weakness in system security procedures, design, implementation, or internal controls that could be exercised (accidentally triggered or intentionally exploited) and result in a security breach or violation of the system's security policy."

Matrix Category	Category Description	Category Options
Attack Vector	Entry point of the potential attack	E.g., OBD-II input, USB port, Bluetooth, GPS, audio system, etc.
Access Method	The transport mechanism that could be used to launch the attack	E.g., counterfeit component, portable device, call center network, RF repeater
Attack Type	Type of attack that could be used	 Spoofing identity Tampering with data Repudiation Information disclosure Denial of service Elevation of privilege
Attack Name/Scenario	A compressed narrative of the potential attack derived from the use cases	 The narrative contains: Name of the attack (title) Who the attacker may be What the targeted component/system may be How the attacker may gain access to the component/system How the attack may be launched
Resources Required	Resources that may be needed to carry out the attack	E.g., hardware, software, access to vehicle (physical or remote), skill level
Casualty Severity	Projected outcome severity due to the potential attack	 High: High likelihood of severe injury or loss of life; loss of control of vehicle Medium: Potential to cause injury; experienced operator may be able to maintain control of vehicle Low: No injury; no loss of vehicle control during the attack; attack motive was for theft, nuisance, or publicity only
Financial Severity	The outcome severity in terms of direct or indirect financial loss to the owner, OEM, suppliers, or society	 High: Could cause major financial loss to vehicle, business or product reputation Medium: Potential to cause moderate financial loss to vehicle, business or product reputation Low: Minimal loss to vehicle, business or product reputation; attack motive was for nuisance or publicity only

Matrix Category	Category Description	Category Options
Trip Phase	The vehicle's movement category at the instance of the potential attack	 One or more of the following may be used: Parked- not moving, engine shut off Idling- not moving, engine running Stop-and-go- i.e., heavy traffic City driving- typical city limits speed Urban driving- typical urban space speeds Highway driving- typical highway speeds Any- Not speed-dependent
Loss of Privacy	Whether or not items such as onboard address books, vehicle location, or passwords may have been compromised and shared with un-trusted parties	• Yes • No
Outcome	Ramifications of a successful potential attack, assuming no mitigations were bypassed	
Operator Override	What an average operator may be able to do to override or avoid the ramifications of the potential attack	E.g., cycling the ignition; disabling functions via a switch; applying brakes
Sophistication Level	The design complexity of the potential attack	 High: Extremely complex code; may attack multiple components/systems; may use zero-day exploits; may have multiple triggers; hard to detect and remove; may be persistent (launching attack payload more than once), and may erase itself after attack is executed Medium: Moderately complex code; may contain remote trigger; may be persistent; may use zero-day exploits Low: Non-persistent; easy to detect; makes use of potential vulnerabilities

Matrix Category	Category Description	Category Options
Difficulty of Implementation	How difficult is it to implement the potential attack	 High: Extremely complex to implement; may require prolonged and advanced physical access to the vehicle; may need specialized tools and/or knowledge to launch. Medium: Moderately complex to implement; may require some physical access to vehicle; may need some and/or specialized knowledge to launch Low: Easy to implement; requires minimal/no physical access to vehicle; requires no specialized knowledge to launch
Likelihood	The likelihood of a potential attack to be carried out	 High: Well-known attack; very easy to perform; canned malware available for the attack Medium: Some knowledge of system needed; access to entry point more difficult; some custom code needed Low: Expert knowledge of component/system required; entry point difficult to access/unexpected; high level of custom coding involved

(b) Populating the Threat Matrix

Below is one example of a use case that has been derived from research materials and input received from automotive SMEs on cybersecurity. Other use case examples can be found in Appendix A. It should be noted that these use case examples have not been reported in real world settings. Some have been studied in academic settings where experimenters had prolonged physical access to vehicles.

The use case below will be used to provide an example of the threat matrix population. Table 8 demonstrates how the threat matrix could be populated in this particular use case.

Use Case Example: Brake Disconnect

A person with physical access to the vehicle attaches a custom device [6] to the OBD-II port. The device has the capability to run a program that can monitor vehicle parameters over the CAN bus and execute the CAN device control service that can send a data packet normally used when building and testing the vehicle, to the electronic brake control module. This could diminish or

prevent the use of brakes when a programmed set of conditions takes place if there is linkage to the ECBM through the OBD-II data bus.

Table 8: T	hreat Matri	x Population	Example
------------	-------------	--------------	---------

Matrix Category	Category Description	Option Chosen
ID Number	Identification number for the attack	1
Attacked Safety and Non- Safety Zone Groups/Attack Support Zone Groups	Groups of various like categories of components and systems that are targeted by the attack or that are used to support the attack	The EBCM has been identified as the component that could be attacked. The attacker could use a device connected to the CAN bus, which falls under the external interface zone. The device connected to the CAN bus communicates with the EBCM, therefore the communications zone is also used.
Attacked Zone Safety Related	Whether or not the attacked zone contains safety related functions	The attack could occur against the Vehicle Operations group which may contain safety related items.
Component/System	The component or system that is under attack	The EBCM is the component that could be subject to an attack.
Vulnerability That Could Be Exploited	Protocols/applications that could be used/corrupted in order to achieve the outcome of the attack	In this category, subject matter knowledge combined with the interconnection and data flow drawings could highlight vulnerabilities that assist or allow the use case attack.
Attack Vector	Entry point of the potential attack	The attack vector could be the OBD-II port. In a complex attack attempt, the attack vector should describe the highest point of entry for the potential attack.
Access Method	The transport mechanism that could be used to launch the attack	A portable device (PC/microcomputer) may have been used to gain access to the platform's network.
Attack Type	Type of attack that could be used	Elevation of privileges
Attack Name/Scenario	A compressed narrative of the potential attack derived from the use cases	The attack scenario is the use case developed earlier. (If it's too lengthy it will be condensed down to the fundamentals of the attack).
Resources Required	Resources that may be needed to carry out the attack	Items such as hardware, software, access time, and prior knowledge are some of the items that can be used.

Matrix Category	Category Description	Option Chosen
Casualty Severity	Projected outcome severity due to the potential attack	There may be a degradation or loss of brake functionality; there could have been a loss of control which could have resulted in severe injury or loss of life. Therefore a severity level of high would be assigned.
Financial Severity	The outcome severity in terms of direct or indirect financial loss to the owner, OEM, suppliers, or society	There may be degradation or loss of brake functionality. Therefore a severity level of High would be assigned.
Trip Phase	The vehicle's movement category at the instance of the potential attack	"Highway speeds" would be indicated for the trip phase because the scenario may have triggered at high speed.
Loss of Privacy	Whether or not items such as onboard address books, vehicle location, or passwords may have been compromised and shared with un-trusted parties	"No" would be selected as there is no attempt during this attack to extract any data from either the passengers or vehicle platform.
Outcome	Ramifications of a successful potential attack, assuming no mitigations were bypassed	The braking capability of the vehicle may have been degraded or lost temporarily or for extended periods of time.
Operator Override	What an average operator may be able to do to override or avoid the ramifications of the potential attack	Potentially using emergency brakes; disengaging engine power; lowering of max gear setting
Sophistication Level	The design complexity of the potential attack	Significant knowledge of proprietary systems, coding and tools used would have been required implying "medium" complexity designation.
Difficulty of Implementation	How difficult is it to implement the potential attack	Brief direct access to the vehicle would have been needed in order to attach the microcomputer, which may or may not be detectable by the operator. A "Iow" designation is suggested.
Likelihood	The likelihood of a potential attack to be carried out	Like other field designations above, there is subjectivity in assessing likelihood of threats. This case could be seen as analogous to someone devising a mechanical tampering method that could also disable the brakes.

Due to the number of categories, the threat matrix could become difficult to read when included in a report; therefore, a format specifically designed for reports is used. Figure 4 shows the completed threat

matrix for the example use case, with the working matrix layout. Figure 5 shows the same data, but in the matrix style for reports. Completed threat matrices for the other use cases (described in Appendix A) can be found in the report matrix format in Appendix B.

ID#	Attacked Zone Group	Attacked Zone Safety Related	Attack Support Zone Groups	Component/ System	Vulnerability That Could Be Exploited	Attack Vector	Access Method	Attack Type	Attack Name/Scenario	Resources Required	Casualty Severity	Financial Severity	Trip Phase	Loss of Privacy	Outcome	Operator Override	Sophistication Level	Difficulty of Implementation	Likelihood
									Brake disconnect: A										
									person with physical										
									access to the vehicle										
									attaches a custom device										
									to the OBD-II port. The										
									device has the capability										
									to run a program which										
									can monitor vehicle										
									parameters over the CAN										
									bus and execute the CAN							Depending			
									Device Control Service							on			
									that can send a data						Cause	conditions			
									packet normally used						behavior	at the time			
									when building and testing						outsi de of	of the			
									the vehicle, to the						normal	attack,			
									Electronic Brake Control						operating	operator			
									Module (EBCM). This	Access to					parameters.	may be able	e		
					BOM Device				could diminish or prevent	OBD-II port,					Brakes will	to use			
					control key				the use of brakes when a	ability to run					not engage.	emergency			
				Eectronic	and seed only				programmed set of	CAN Device					Operator is	brakes to			
	Vehicle			Brake	16 bits; Ability	/			conditions takes place if	Service,					unableto	bring			
	Operations			Control	to access			Bevation	there is linkage to the	knowl edge of					stop the car	vehicle to a		[
	(Chassis		Communications,	Module	diagnostic	ODB-II	Portable	of	ECBM through the OBD-II	BCM packet			Highway		using service	controlled		[
1	and Safetv)	Y	External Interface	(EBOM)	areas	Port	Device	Privileces	data bus.	information	High	High	speed	No	brakes.	halt.	Medium	Low	Medium

Figure 4: Threat Matrix Working Layout

Threat Model Matrix						
ID#	1		Attacked Zone	Vehicle Operations		
ID#	1		Group	(Chassis and Safety)		
			Attacked Zone	v		
			Safety Related	1		
			Attack Support	Communications,		
			Zones	External Interface		
			Component/ System	EBCM		
Vulnorobility	EPCM davies control kay and cood		Attack Vector	ODB-II Port		
That Could Be	only 16 bits: ability to access		Access Method	Portable Device		
Evoloited	diagnostic areas		Attack Type	Elevation of privileges		
	dragi losti careas		Casualty Severity	High		
			Financial Severity	High		
			Trip Phase	Highway speed		
			Sophistication Level	Medium		
Difficulty of Implementation	Low		Likelihood	Medium		
			Operator Override	Depending on conditions at the time of the attack, operator may be able to use emergency brakes to bring vehicle to a controlled halt.		
Attack Scenario	Brake Disconnect: A person with physical access to the vehicle attaches a custom device to the OBD-II port. The device has the capability to run a program which can monitor vehicle parameters over the CAN bus and execute the CAN device control service that can send a data packet normally used when building and testing the vehicle, to the EBCM. This could diminish or prevent the use of brakes when a programmed set of conditions takes place if there is linkage to the ECBM through the OBD-II data bus.					
Resources Required	Access to OBD-II port, ability to run C information	AN	device service, knowled	ge of EBCM packet		
Outcome	Cause behavior outside of normal operating parameters. Brakes will not engage. Operator is unable to stop the car using service brakes.					

Figure 5: Threat Matrix Report Layout

Appendix A: Use Case Examples

A-1

The use cases below have been derived from research materials and input received from automotive SMEs on cybersecurity. It should be noted that these use case examples have not been reported in real world settings. Some have been studied in academic settings where experimenters had prolonged physical access to vehicles.

Brake Disconnect [6]

A person with physical access to the vehicle attaches a custom device to the OBD-II port. The device has the capability to run a program which can monitor vehicle parameters over the CAN bus and execute the CAN device control service that can send a data packet normally used when building and testing the vehicle, to the EBCM. This could diminish or prevent the use of brakes when a programmed set of conditions takes place if there is linkage to the ECBM through the OBD-II data bus.

Horn Activation

A person with physical access to the vehicle installs a wireless interface to the USB port which can remotely send commands to the vehicle data bus such as to activate the vehicle's horn [6, 7]. This could happen via short range proximity wireless or long range wireless pathways.

Engine Halt Air Bag

An owner installs an after-market radio purchased from a third party, which may come with an on-board malware that can access a vehicle data bus (assuming there is a pathway) that could potentially mimic the air bag deployed message from the inflatable restraint sensing and diagnostic module to the ECM. The ECM reads the forged packet and shuts down the engine at highway speeds.

Portable Device Injection

The owner downloads music from an untrusted source and creates a CD. The downloaded file could contain specific malware that when played sets the dominant state node for the infotainment unit for that vehicle and then uses the infotainment unit to launch a denial-of-service type of attack against the BCM. As the attack takes place, the instrument cluster may freeze in its current state, and when the vehicle is turned off, it may not allow the vehicle to be restarted without communication to the BCM being reestablished first.

Dealership Download

The LAN at the service department gets compromised. When an automobile is connected to the dealership's network via the OBD-II port during the process of providing service, the attacker could install malware that could be exploited later on while using the service department's computers as a pass through.

A-2

Cellular Attack

An attacker calls the car's embedded cell number [8] and launches malicious code that defeats the analog to digital modem's software security challenge via a buffer overflow attack.³ Once the software modem is compromised, the attacker could gain access to the telematics unit. The malicious code then could cause the telematics unit to connect to an IP address. Once a connection to the IP address may be established, the attacker could use the telematics unit as an entry point to download and run further malicious code, which could execute subsequent attacks that may provide automotive systems false sensor data which could result in erroneous action.

Key Fob Cloning

An attacker exploits vulnerabilities in the theft alarm system to make a clone of a key fob [9], which provides full access to the car.

Long Distance Keyless Entry Repeater Version

When the vehicle is parked, a team of attackers use loop antennas and wireless repeaters to relay the polling request from the driver's key fob [10] to the vehicle to get access. The same method could also be used to start the vehicle.

Call Center Fleet Attack

A hacker group gains control of servers at a telematics call center. The hackers then could issue engine disable commands to all cars under their control from the compromised call center.

Car Rental or Lease

A person with access to large number of vehicles that are typically operated by others, such as a rental car [6] employee, could potentially install malware via physical access to the vehicle. The malware could take form in any of the attack types described in this section.

Malware Onboard

An end-of-line programming station gets compromised with malware. The malware is downloaded into ECUs during the manufacturing process. The malware could be designed to execute under specific conditions and time periods. The malware could take form in any of the attack types described in this section.

³ A buffer overflow attack is where a program, while writing data to a buffer, overruns the buffer's boundary and overwrites adjacent memory. Buffer overflows can be triggered by inputs that are designed to execute code, or alter the way the program operates. This may result in erratic program behavior, including a breach of system security.

Appendix B: Completed Threat Matrices

Brake Disconnect

Threat Model Matrix							
10#	1		Attacked Zone	Vehicle Operations			
10#	1		Group	(Chassis and Safety)			
			Attacked Zone Safety Related	Y			
			Attack Support	Communications,			
			Zones	External Interface			
			Component/ System	Electronic Brake Control Module			
Vulnerability	EBCM Device control key and seed		Attack Vector	ODB-II Port			
That Could Be	only 16 bits; Ability to access		Access Method	Portable Device			
Exploited	diagnostic areas		Attack Type	Elevation of Privileges			
			Casualty Severity	High			
			Financial Severity	High			
			Trip Phase	Highway Speed			
			Sophistication Level	Medium			
Difficulty of Implementation	Low		Likelihood	Medium			
			Operator Override	Depending on conditions at the time of the attack, operator may be able to use emergency brakes to bring vehicle to a controlled halt.			
Attack Scenario	Brake Disconnect: A person with physical access to the vehicle attaches a custom device to the OBD-II port. The device has the capability to run a program which can monitor vehicle parameters over the CAN bus and execute the CAN device control service that can send a data packet normally used when building and testing the vehicle, to the electronic brake control module. This could diminish or prevent the use of brakes when a programmed set of conditions takes place if there is linkage to the ECBM through the OBD-II data bus.						
Resources Required	Access to OBD-II port, ability to run CAN device service, knowledge of EBCM packet information						
Outcome	Cause behavior outside of normal operating parameters. Brakes will not engage. Operator is unable to stop the car using service brakes.						

Horn Activation

Threat Model Matrix						
10#	2	Attacked Zone	Vehicle Operations (Body			
ID#	2	Group	Electronics)			
		Attacked Zone	N			
		Safety Related				
		Attack Support	Communications,			
		Zones	External Interface			
		Component/ System	Body Control Module			
Vulnerability		Attack Vector	USB Port			
That Could Be	Device control key not needed	Access Method	RF transmitter			
Exploited	Device control key not needed	Attack Type	Spoofing			
		Casualty Severity	Low			
		Financial Severity	Low			
		Trip Phase	Any			
		Sophistication Level	Medium			
Difficulty of Implementation	Medium	Likelihood	Medium			
		Operator Override	None			
Attack Scenario	Horn Activation: A person with physical access to the vehicle installs a wireless interface to the USB port which can remotely send commands to the vehicle data bus such as to activate the vehicle's horn. This could happen via short range proximity wireless or long range wireless pathways.					
Resources Required	Access to USB port, ability to run CAN	I device service, knowledge	of BCM packet information			
Outcome	Cause driver distraction. Cause erratic behavior within normal parameters. Horn blows on command.					

Engine-Halt Airbag

Threat Model Matrix							
ID#	3		Attacked Zone Group	Vehicle Operations (Engine Control)			
			Attacked Zone Safety Related	Y			
			Attack Support Zones	Communications, Infotainment			
			Component/ System	Engine Control Module (ECM)			
Vulnerability			Attack Vector	Network Harness Connectors			
That Could Be Exploited	reached from non-critical area		Access Method	Component Tampered With/Modified			
			Attack Type	Spoofing			
			Casualty Severity	Medium			
			Financial Severity	Medium			
			Trip Phase	City, Urban, Highway			
			Sophistication Level	Medium			
Difficulty of Implementation	Low		Likelihood	Low			
			Operator Override	None			
Attack Scenario	Engine-Halt Airbag: An owner installs an after-market radio purchased from a third party, which may come with an on-board malware that can access a vehicle data bus (assuming there is a pathway) that could potentially mimic the airbag deployed message from the inflatable restraint sensing and diagnostic module to the ECM. The ECM reads the forged packet and shuts down the engine at highway speeds.						
Resources Required	Knowledge of CAN and SDM protocols and packet composition, ability to design and load malware into radio						
Outcome	Cause erratic behavior outside of normal parameters. Engine shuts off while at speed. Possible loss of power steering, and power assist for braking.						

Portable Device Injection

Threat Model Matrix			
ID#	4	Attacked Zone Group	Vehicle Operations (Body Electronics)
		Attacked Zone Safety Related	N
		Attack Support Zones	Communications, External Interfaces, Infotainment
Vulnerehilitu		Component/ System	Body Control Module (instrument panel)
Vulnerability	CAN susceptible to DOS attacks,	Attack Vector	CD/DVD Player
That Could Be	Node can be set to dominant state	Access Method	Removable Media
Exploited	indernitery	Attack Type	Denial of Service
		Casualty Severity	Low
		Financial Severity	Medium
		Trip Phase	Any
		Sophistication Level	Medium
Difficulty of Implementation	Low	Likelihood	Medium
		Operator Override	None
Attack Scenario	Portable Device Injection: The owner downloads music from an untrusted source and creates a CD. The downloaded file could contain specific malware that when played sets the dominant state node for the infotainment unit for that vehicle and then uses the infotainment unit to launch a denial-of- service type of attack against the BCM. As the attack takes place, the instrument cluster may freeze in its current state, and when the vehicle is turned off, it may not allow the vehicle to be restarted without communication to the BCM being reestablished first.		
Resources Required	Knowledge of CAN and BCM protocols and packet composition, ability to design malware program		
Outcome	Cause erratic behavior outside of normal parameters. Prevents normal bus communications flow. Causes false or misleading information to be displayed. Instrument panel freezes. When car is turned off cannot be restarted unless communication to BCM is restored.		

Dealership Download

Threat Model Matrix				
ID#	5	Attacked Zone Group	Vehicle Operations	
		Attacked Zone Safety Related	N/A	
		Attack Support	Communications,	
		Zones	External Interfaces	
		Component/ System	CAN Network/ECUs	
		Attack Vector	Diagnostic Port	
	No interview data ati an avatara (IDO)	Access Method	Network Service Center	
Vulperobility	improper or pe firewell	Attack Type	Tampering With Data	
That Could Be Exploited	improper or no firewall configurations, multiple network links to internet, weak password strength, etc.	Casualty Severity	Any (dependent on environment at time of the attack)	
		Financial Severity	High	
		Trip Phase	Any (dependent on environment at time of the attack)	
		Sophistication Level	Medium	
Difficulty of Implementation	Medium	Likelihood	Medium	
		Operator Override	Unknown	
Attack Scenario	Dealership Download: The LAN at the service department gets compromised. When an automobile is connected to the dealership's network via the OBD-II port during the process of providing service, the attacker could install malware that could be exploited later on while using the service department's computers as a pass through.			
Resources Required	Ability to gain control of service department network, ability to create malware for CAN environment			
Outcome	Multiple automobiles affected, service department's reputation destroyed.			

Cellular Attack

Threat Model Matrix				
ID#	6		Attacked Zone Group	Vehicle Operations
			Attacked Zone Safety Related	N/A
			Attack Support Zones	Communications, Infotainment
			Component/System	Telematics
			Attack Vector	GSM/CDMA
			Access Method	Cellular Network
V/ulperebility/	Flaws in random implementation		Attack Type	Tampering With Data
That Could Be Exploited	challenge, and authentication system, Possibility of playing modulated version of attack payload. Susceptible to buffer overflow		Casualty Severity	Any (dependent on the environment at time of the attack)
			Financial Severity	Any (dependent on the environment at time of the attack)
			Trip Phase	Any
			Sophistication Level	High
Difficulty of Implementation	High		Likelihood	Low
			Operator Override	None
Attack Scenario	Cellular Attack: An attacker calls the car's embedded cell number and launches malicious code that defeats the analog to digital modem's software security challenge via a buffer overflow attack. Once the software modem is compromised, the attacker could gain access to the telematics unit. The malicious code then could cause the telematics unit to connect to an IP address. Once a connection to the IP address may be established, the attacker could use the telematics unit as an entry point to download and run further malicious code, which could execute subsequent attacks that may provide automotive systems false sensor data which could result in erroneous action.			
Resources Required	Extensive knowledge of software moderns, ability to reverse engineer modern protocol			
Outcome	Car's brakes are applied for no apparent reason			

Key Fob Cloning

Threat Model Matrix			
ID#	7	Attacked Zone Group	Vehicle Operations (Body Electronics)
		Attacked Zone Safety Related	N
		Attack Support Zones	Communications, External Interfaces
		Component/ System	Key Fob
N/ 1 1.114		Attack Vector	OBD-II Port
Vulnerability	Kay teh fleehing vie OPD II nort	Access Method	Custom ECU
That Could Be	Key fob flashing via OBD-11 port	Attack Type	Spoofing
Exploited		Casualty Severity	Low
	-	Financial Severity	High
		Trip Phase	Parked
		Sophistication Level	Low
Difficulty of Implementation	Low	Likelihood	High
		Operator Override	None
Attack Scenario	Key Fob Cloning: An attacker exploits vulnerabilities in the theft alarm system to make a clone of a key fob, which provides full access to the car.		
Resources Required	Knowledge of anti-theft alarm system, OBD key programmer hardware and blank/used key fobs obtained via internet		
Outcome	Automobile can be easily stolen.		

Long Distance Keyless Entry Repeater Version

Threat Model Matrix				
ID#	8		Attacked Zone Group	Vehicle Operations (Body Electronics)
			Attacked Zone Safety Related	N
			Attack Support Zones	Communications, External Interfaces
			Component/ System	Keyless Entry System
			Attack Vector	Radio Frequency
Vulnerability			Access Method	RF Repeater
That Could Be	Key tob and car transmitting in open		Attack Type	Spoofing
Exploited			Casualty Severity	Low
			Financial Severity	High
			Trip Phase	Parked
			Sophistication Level	Low
Difficulty of Implementation	Low		Likelihood	Medium
			Operator Override	Keep Key Fob in RF Shielded Area
Attack Scenario	Long-Distance Keyless Entry Repeater Version: When the vehicle is parked, a team of attackers use loop antennas and wireless repeaters to relay the polling request from the driver's key fob to the vehicle to get access. The same method could also be used to start the vehicle.			
Resources Required	Knowledge of specific automobile/owner target, accomplice, wireless repeater set-up, two small loop antennas			
Outcome	Automobile can be easily stolen.			

Call Center Fleet Attack

Threat Model Matrix			
ID#	9	Attacked Zone Group	Vehicle Operations (Power Train)
		Attacked Zone Safety Related	Y
		Attack Support Zones	Communications, External Interfaces
		Component/ System	Telematics
Mada an ab liter		Attack Vector	GSM/CDMA
Vulnerability	Weak or non-existent IDS, firewalls	Access Method	Network Call Center
Final Could Be	incorrectly configured, etc.	Attack Type	Spoofing
Exploited		Casualty Severity	Medium
		Financial Severity	High
		Trip Phase	Any
		Sophistication Level	Medium
Difficulty of Implementation		Likelihood	Low
		Operator Override	None
Attack Scenario	Call Center Fleet Attack: A hacker group gains control of servers at a telematics call center. The hackers then could issue engine disable commands to all cars under their control from the compromised call center.		
Resources Required	Knowledge of firewalls, various network hacking techniques, and telematics command groups		
Outcome	Cause erratic behavior outside of normal operational parameters. Automobiles not running will be able to be started. Automobiles on the road will initiate a controlled shutdown.		

Car Rental or Lease

Threat Model Matrix				
ID#	10	Attacked Zone Group	Vehicle Operations (Power Train)	
		Attacked Zone Safety Related	Y	
		Attack Support Zones	Communications, External Interfaces	
		Component/ System	Engine Control Module	
Vulporobility		Attack Vector	OBD-II port	
That Could Be	Ability to re-flash ECM without	Access Method	PC	
Fynloited	authentication	Attack Type	Elevation of privileges	
Exploited		Casualty Severity	Medium	
		Financial Severity	High	
		Trip Phase	Any	
		Sophistication Level	Medium	
Difficulty of Implementation	Medium	Likelihood	Medium	
		Operator Override	None	
Attack Scenario	Car Rental or Lease: A person with access to large number of vehicles that are typically operated by others (such as a rental car employee) could potentially install malware via physical access to the vehicle. The malware could take form in any of the attack types described in this section.			
Resources Required	Knowledge of CAN and ECU flashing procedures, ability to design and load malware into re- flashed ECM, access to fleet cars			
Outcome	Automobiles not running will not be able to be started. Automobiles on the road will shut down. Major loss of business for rental car facility.			

Malware Onboard

Threat Model Matrix				
ID#	11		Attacked Zone Group	Vehicle Operations (Power Train)
			Attacked Zone Safety Related	Y
			Attack Support Zones	Communications
			Component/ System	Transmission Control Module
V/ulperebility			Attack Vector	Network
That Could Be	manufacturer, ability to spoof		Access Method	Component Tampered With/Modified
Exploited	transmission control module		Attack Type	Tampering With Data
			Casualty Severity	Low
			Financial Severity	Medium
			Trip Phase	Idling
			Sophistication Level	Medium
Difficulty of Implementation	High		Likelihood	Low
			Operator Override	Manual Solenoid Release (some cars)
Attack Scenario	Malware Onboard: An end-of-line programming station gets compromised with malware. The malware is downloaded into ECUs during the manufacturing process. The malware could be designed to execute under specific conditions and time periods. The malware could take form in any of the attack types described in this section.			
Resources Required	Knowledge of CAN and ECU manufacturing procedures, ability to design and load malware, access to PC linked to manufacturing process			
Outcome	Automatic transmission will be locked in park. Possible OEM reputation damage.			

Appendix C: Works Cited

- Merritt, R. (2011, May 4)."IBM tells story behind Chevy Volt design. San Jose, CA: EE Times. Retrieved from <u>www.eetimes.com/document.asp?doc_id=1259444</u>
- [2] Moving Ahead for Progress in the 21st Century Act (MAP-21). P.L. 112-141, 49 U.S.C. 30171. Sec. 30171.
- [3] Microsoft Developer Networks. (2005). The STRIDE threat model. Retrieved from <u>http://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx</u>
- [4] Open Web Application Security Project . (2010, September 29). Threat risk modeling. Retrieved from <u>www.owasp.org/index.php/Threat_Risk_Modeling</u>
- [5] Microsoft Developer Network. (2005). Cheat sheet: Web application security frame. Retrieved from <u>http://msdn.microsoft.com/en-us/library/ff649461.aspx</u>
- [6] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., ... & Savage, S. (2010). Experimental security analysis of a modern automobile. In 31st IEEE Symposium on Security and Privacy, Oakland, CA, May 16-19, 2010.
- [7] Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (2008). E-safety vehicle intrusion protected applications. Munich, Germany: Author. Retrieved from <u>http://evita-project.org/</u>
- [8] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., ... & Kohno, T. (2011). Comprehensive experimental analyses of automotive attack surfaces. In D. Wagner (Chair), SEC'11, Proceedings of the 20th USENIX Conference on Security, USENIX Association, August 8-12, San Francisco, CA. . Available at www.usenix.org/events/sec11/tech/full_papers/Checkoway.pdf
- [9] Torchinsky, J. (2012, July 6). Watch hackers steal a BMW in three minutes. (Web page). Retrieved from <u>http://jalopnik.com/5923802/watch-hackers-steal-a-bmw-in-three-minutes?tag=car-crime</u>
- [10] Francillon, A., Danev, B., & Capkun, S. Relay attacks on passive keyless entry and start systems in modern cars. Paper presented at Network and Distributed System Security Symposium, February 6-9, 2011, San Diego, CA. Available at <u>www.internetsociety.org/sites/default/files/franc.pdf</u>

C-1

DOT HS 812 074 October 2014

